Continued from outside back cover

145	Numerical implementation of the exact dynamics of free rigid bodies Ramses van Zon and Jeremy Schofield
165	Unstructured surface mesh adaptation using the Laplace–Beltrami target metric approach Glen Hansen and Andrew Zardecki
183	A level set approach to anisotropic flows with curvature regularization Martin Burger, Frank Haußer, Christina Stöcker, and Axel Voigt
206	A scalar potential formulation and translation theory for the time-harmonic Maxwell equations Nail A. Gumerov and Ramani Duraiswami
237	Magnetotelluric inversion via reverse time migration algorithm of seismic data Taeyoung Ha and Changsoo Shin
263	A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions X.J. Gu and D.R. Emerson
284	Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation
	Håvard Berland, Alvaro L. Islas, and Constance M. Schober
300	A second order accurate level set method on non-graded adaptive cartesian grids Chohong Min and Frédéric Gibou
322	Three-dimensional numerical investigation of a droplet impinging normally onto a wall film N. Nikolopoulos, A. Theodorakakos, and G. Bergeles
342	An upwinding boundary condition capturing method for Maxwell's equations in media with material interfaces
	Changfeng Xue and Shaozhong Deng
363	An adaptive finite element method for magnetohydrodynamics S. Lankalapalli, J.E. Flaherty, M.S. Shephard, and H. Strauss
382	Projective and coarse projective integration for problems with continuous symmetries M.E. Kavousanakis, R. Erban, A.G. Boudouvis, C.W. Gear, and I.G. Kevrekidis
408	Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm P. Dimitrakopoulos
427	Modeling turbulent flow over fractal trees with renormalized numerical simulation Stuart Chester, Charles Meneveau, and Marc B. Parlange
449	Spectral method for matching exterior and interior elliptic problems Piotr Boronski
464	A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry Stéphane Jaouen
491	Path sampling with stochastic dynamics: Some new algorithms Gabriel Stoltz
509	Calculating the free energy of nearly jammed hard-particle packings using molecular dynamics Aleksandar Donev, Frank H. Stillinger, and Salvatore Torquato
528	A sharp interface immersed boundary method for compressible viscous flows R. Ghias, R. Mittal, and H. Dong
554	A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele–Shaw cell Shuwang Li, John S. Lowengrub, and Perry H. Leo
568	Electromagnetic gyrokinetic PIC simulation with an adjustable control variates method R. Hatzky, A. Könies, and A. Mishchenko